Coarse-to-fine road scene segmentation via hierarchical graphical models
نویسندگان
چکیده
منابع مشابه
Speeding-up Graphical Model Optimization via a Coarse-to-fine Cascade of Pruning Classifiers
We propose a general and versatile framework that significantly speeds-up graphical model optimization while maintaining an excellent solution accuracy. The proposed approach relies on a multi-scale pruning scheme that is able to progressively reduce the solution space by use of a novel strategy based on a coarse-to-fine cascade of learnt classifiers. We thoroughly experiment with classic compu...
متن کاملRoad Scene Segmentation from a Single Image
Road scene segmentation is important in computer vision for different applications such as autonomous driving and pedestrian detection. Recovering the 3D structure of road scenes provides relevant contextual information to improve their understanding. In this paper, we use a convolutional neural network based algorithm to learn features from noisy labels to recover the 3D scene layout of a road...
متن کاملError-Tolerant Coarse-to-Fine Matching Model for Hierarchical Graphs
Graph-based representations are effective tools to capture structural information from visual elements. However, retrieving a query graph from a large database of graphs implies a high computational complexity. Moreover, these representations are very sensitive to noise or small changes. In this work, a novel hierarchical graph representation is designed. Using graph clustering techniques adapt...
متن کاملA Hierarchical Coarse-to-Fine Approach for Fundus Image Registration
Accurate registration of retinal fundus images is vital in computer aided diagnosis of retinal diseases. This paper presents a robust registration method that makes use of the intensity as well as structural information of the retinal vasculature. In order to correct for illumination variation between images, a normalized-convolution based luminosity and contrast normalization technique is prop...
متن کاملA 3D Coarse-to-Fine Framework for Automatic Pancreas Segmentation
In this paper, we adopt 3D CNNs to segment the pancreas in CT images. Although deep neural networks have been proven to be very effective on many 2D vision tasks, it is still challenging to apply them to 3D applications due to the limited amount of annotated 3D data and limited computational resources. We propose a novel 3D-based coarseto-fine framework for volumetric pancreas segmentation to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Robotic Systems
سال: 2019
ISSN: 1729-8814,1729-8814
DOI: 10.1177/1729881419831163